

EXPLORING THE POLICY LANDSCAPE OF CARBON DIOXIDE REMOVAL

Carbon removal needs and options

KATIE LEBLING, WORLD RESOURCES INSTITUTE

- 1. What is CDR?
- 2. Why do we need it?
- 3. What are some of the main CDR approaches?
- 4. How much do we need?
- 5. Why policy is critical?

NECESSITY OF CARBON REMOVAL

Greenhouse gas emissions (stylised pathway)

CARBON REMOVAL INCLUDES MANY THINGS

Carbon removal approaches on land

Carbon removal approaches in the ocean

DIRECT AIR CAPTURE (DAC)

Direct air capture

- Uses chemicals that react with CO₂ in the air to capture it
- CO₂ must be stored somewhere (e.g., underground)
- Energy intensive; requires scaled up renewable and zero-carbon energy
- Handful of projects operational; largest is in Iceland, removing 36,000 tCO₂/yr
- Megaton-scale projects in development in the US

Solid sorbent DAC system

CARBON MINERALIZATION

Carbon mineralization

- Accelerates naturally occurring rock weathering that takes up CO₂
- Can be done in many ways e.g., applying alkaline rock dust on croplands, coastal areas, ocean; using mine tailings or industrial waste; or as an underground storage option for CO₂ captured elsewhere

Basalts react with CO2 dissolved in water, forming solid carbonates

Agricultural liming, which is similar in application to enhanced rock weathering on croplands

MARINE CARBON REMOVAL

- Wide range of ocean CDR approaches, some analogous to CDR options on land
- All are at early stages of development or demonstration and face knowledge gaps around efficacy and ecological impacts

Green olivine sand can be used for coastal alkalinity enhancement

BIOMASS CARBON REMOVAL AND STORAGE

Biomass carbon removal and storage

- Uses biomass, which contains CO₂ captured through photosynthesis, and prevents the carbon from being released
- Options include: pyrolysis to bio-oil, gasification with hydrogen production, biochar, biomass burial
- Sourcing biomass that does not cause habitat conversion or displace food production is critical to net-negativity

Biomass waste can be used for carbon removal

U.S. NEED FOR CARBON REMOVAL

"Contributions from land sink enhancement range from 1-6%. Contributions from CO2 removal range from 6-8%" Total: ~0.5-0.9 Gt

U.S. NEED FOR CARBON REMOVAL

Department of Energy, Office of Fossil Energy and Carbon Management Strategic Vision, 2022

U.S. NEED FOR CARBON REMOVAL

U.S. Global Change Research Program Fifth National Climate Assessment, 2023

🔆 WORLD RESOURCES INSTITUTE

WHERE ARE WE TODAY?

Historical rate of change in scaling CDR vs. rate of change needed to reach national climate goals

Source: Historical data based on Systems Change Lab; targets basted on ranges included in the U.S. LTS, Fifth National Climate Assessment, and FECM Strategic Vision.

🋞 WORLD RESOURCES INSTITUTE

WHY POLICY IS CRITICAL FOR CDR

- 1. CDR is largely a public good
- 2. It doesn't have a built-in market
- 3. Policy is needed to create supply and demand faster than it would otherwise happen

THANK YOU!